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FL 323064052 US 
$ Department of Chemistry, Univenity of Toronto, T"rnto, Ontario, M5S 1A1, Canada 

Received 11 March 1991 

AbstracL The BPACP algorithm applied IO polygons involves sampling on a Markov chain 
whose state space is the set of all polygons. In three dimensions, for the simple cubic 
lattice, we prove that the ergodic classes of this Markov chain are the knot classs of 
the polygons. 

1. Introduction 

Monte Carlo treatments of the self-avoiding walk and related problems fall into two 
broad classes. One of these could be described as walk growing methods in which 
the walk is constructed step by step. For a discussion of this approach see e.g. 
Hammersley and Handscomb (1964), chapter 10. The other general approach is to 
make changes in the walk and produce a correlated sequence of walks. This approach 
is often called Mefropolis slyle Monte Carlo (Metropolis er al 1953) and involves 
sampling along a realization of a Markov chain, whose (unique) limit distribution 
is the desired distribution. For example, if the problem being studied is the pure 
n-step self-avoiding walk, the state space of the Markov chain should be the set of 
all n-step self-avoiding walks and the limit distribution should be uniform. The limit 
distribution must be unique and not depend on the initial state of the realization of 
the Markov chain (Hammersley and Handscomb 1964). 

Early attempts in this direction include papers by Verdier and Stockmayer (1962), 
&on (1965), Bluestone and Vold (1965), Monnerie and Geny (1969) and La1 (1969), 
although some of these workers had in mind a simulation of the dynamics of the 
polymer being modelled by the walk. There has been a recent renewal of interest 
in this kind of approach, both from a theoretical and from a practical point of view. 
Madras and Sokal (1987) proved that no such method which is length conserving (i.e. 
for fixed n )  and uses only local moves can be ergodic, which implies that the limit 
distribution will depend on the initial state of the realization. 

This paper is concerned with the BFACF algorithm (Berg and Foester 1981, Aragao 
de Carvalho er al 1983, Aragao de Carvalho and Caracciolo 1983) which simulates 
walks with variable length and f i e d  endpoints in the hypercubic lattice. When applied 
to self-avoiding walks with fixed endpoints in the square lattice the underlying Markov 
chain is known to be ergodic (Madras 1986). The BFACF algorithm is not related 
to the Berretti-Sokal algorithm (Berretti and Sokal 1985) which simulates walks 
with free endpoints and variable length. The dynamical behaviour of the BFACF 
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algorithm is known to be considerably worse than the Berretti-Sokal algorithm (for 
recent progress in understanding the dynamical behaviour of these algorithms see, for 
example, Caracciolo and Sokal 1986, Sokal and Thomas 1988, Caracciolo et a1 1990a, 
b, 1991). 

The algorithm can be applied to polygons but in this case ergodicity questions 
are rather more .tricky. For the square lattice Madras (1986) has shown that the 
algorithm is ergodic but, in three dimensions, it is easy to see that the BFACF moves 
ai!! EO! mzver! I knotted pe!ygoz !D 8; ??zkzntted pdygon is enocgh to s h ~ w  
that the algorithm is not ergodic. In this paper we prove that the ergodic classes 
are the knot types. That is, if two polygons are of the same knot type they can be 
interconverted by BFACF moves, but not otherwise. This result is interesting from two 
points of view. It means that the BFACF algorithm cannot be applied (as it stands) to  
sample uniformly from the space of all polygons but, perhaps more importantly, it is 

Elsewhere we make use of this feature to investigate the dimensions of polygons of 
k e d  knot type (Janse van Rensburg and Whittington 1991). 

E J Janse van Rensburg and S G Whirringion 

a mweeicnt a!gorithm tor investigati.n.g the propert$s of po!ygall4 of !ked h a t  !yF. 

2. Definitions 

2.1. The BPACF AigonIhm 

An unrooted self-avoiding polygon, or polygon U, in any lattice, is a sequence of 
lattice sites U,,, w1 ,wz,.  . . ,U,, and associated edges (wi ,  w ; + ~ )  such that: wo = w,, 
and wi and wi+l are nearest neighbours in the lattice, and w1 , w z , .  . . ,an are all 
distinct. If wo # w, then we call w a walk. Let Z d  be the &dimensional hypercubic 
lattice, kt {ei]!=: be the set of orthogonal unit vectors in zd;  he BFACF algorithm 
is a local stochastic process which operates on paths (any sequence of edges) in 
the hypercubic lattice. It generates statistical ensembles of paths with a Boltzmann 
distribution (Berg and Foester 1981). The algorithm was first applied to ‘bosonic’ 
walks (Brownian walks) and ‘fermionic’ walks (Brownian walks without ‘spikes’) by 
Berg and Foester (1981), before it was applied to the self-avoiding walk by Aragao 
de Carvalho e t  al (1983) and Aragao de Carvalho and Caracciolo (1983). 

Let P be the space of equivalence classes of polygons modulo a translation in 
Z d ,  and let W,, be the set of all walh connecting the lattice sites I and y in Zd.  
(In the subsequent discussions, we refer to elements of P as ‘polygons’; since these 
are in fact equivalence classes modulo a translation, we see that they are unrooted 
polyp” Observe that these are not the same as walks which start and terminate a t  
neighbouring lattice sites, which correspond to roored polyRons.) The BFACF algorithm 
operates on w (which is either a walk in Wry or an unrooted polygon in P) by 
attempting one of the local deformations shown in figure 1, at a randomly selected 
location on edges which are presenr in w. If successful, these elementay operations 
result in a length change in w which is either -2, 0 or  +2. Observe that if w is 
a walk, then the local deformations cannot move its endpoints (which are therefore 
fixed in the lattice). In contrast, an unrooted polygon can be translated anywhere, as 
we shall prove later in this paper (proposition 3.10). For a detailed description of the 
algorithm, see for example Caracciolo et al 1990a (which contains in addition to the 
usual implementation also a Metropolis style implementation of the algorithm). 

The algorithm in;olves sampling along a realization of a Markov chain, the state 
space of which is the set of all polygons or walks with fixed endpoints. In two 
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Figure 1. 'IXc elementary moves of the BFACP algorithm. 

dimensions the Markov chain is known to be irreducible (Madras 1986) and in three 
dimensions it is known to be reducible (Madras and Sokal 1987). Let the ergodicity 
classes in three dimensions be &,, i = 1,2, .... If the algorithm is applied to polygons 
then it is known that the limit distribution of the Markov chain is not unique and 
depends on the initial state of the realization. In general, we can write the limit 
distribution as (Berg and Foester 1981) 

T i ( W )  = zi(p)-'lwlp'"' (2.1) 

where w E ti for some i, 1wI is the number of edges in w ,  p is an adjustable 
parameter and the normalization factor Z,(p) is given by 

The set &i is determined by the initial polygon or walk in the realization. 
The transition probability matrix P = { p ( w  - v)} = { p u u }  has the following 

properties in its ergodic classes: (1) For each w ,  U E &, there exists an m 2 0 such 
that the m-step transition probability from w to U is positive. (2) For each polygon 
U E ti, CWEe, r i ( w ) p w v  = r i ( v ) .  It is easy to show that r i ( w )  is the unique limit 
distribution of the Markov chain with state space &, and transition probability matrix 
P (Kemeny and Snell 1976). 

In two dimensions there is only one ergodic class. In three and higher dimensions 
we have to determine the ergodic classes &,. In section 3 we consider the case in 
three dimensions, which is particularly interesting. In four and higher dimensions 
little is known about the behaviour of this algorithm. 

2.2. Knots and porygans 
Let S' be the circle, and consider the map f : S' - R3, an embedding of a 
circle into Euclidean 3-space. (That is, f is one-to-one and is a homeomorphism 
onto its image.) We write this map as ( f ;  S1,R3). A polygon w E Z3 c R3 is 
a piecewise linear embedding of S' in R3. We call any embedding ( f ;  S',R3) a 
knot. An embedding ( f ;  S', R3)  is oriented if we give an orientation to the circle. 
?ko (piecewise linear) oriented embeddings ( f; St ,  R3) and (9; S' , R3)  are ambienr 
isotopic if there is an orientation-presewing isotopy fl : R3 x I - R3 x I (I is the 
unit intenal) with H(y , l )  = ( h t ( y ) , i )  such that h, is the identity, and h,f = g. 
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In other words, we can continuously deform 72' such that ( f ;  S1,R3) is taken into 
( 9 ;  S',R3).  We note that two oriented polygons which are ambient isotopic do not 
need to have the same number of edges. 

We call two (oriented) piecewise linear embeddings equivalent if they are ambient 
isotopic. We call the equivalence classes of (oriented) embeddings of the circle into 
Euclidean space /mol fypes. In the case of polygons in Z3, we define a knot type as 
all the polygons which are in the same equivalence class when viewed as piecewise 
h e a r  embeddings of the circle into R3. 

Aprojecrion P of a circle on any plane RZ C R3 is called regular if (1) there are 
only finitely many multiple points {pill < i < n}, (2) all multiple points are double 
points, and (3) no vertex of the knot is mapped onto a double point. 

The regular projection of a knot does not determine the knot but, if we indicate 
at every double point the overpassing line and the orientation of the knot, we can 
reconstruct the knot from its regular projection. Such a projection (which allows the 
reconstruction of the original knot) is called a knot projection (Burde and Zieschang 
1985). 

' h o  knot projections are defined to be equivalenf if they are connected by a 
finite sequence of Reidemeister moves (Reidemeister 1932), which are (local) op- 
erations on the knot projection. We illustrate the Reidemeister moves in figure 2. 
All these moves can be realised in the knot projection by an ambient isotopy of the 
knot. Therefore equivalent knot projections define equivalent knots. The converse 
is also true: equivalent knots have equivalent knot projections (Reidemeister 1923). 
Therefore, two knots are equivalent if and only if their projections are equivalent. 

E J Jame van Renrburg and S G Whitrington 

Plgurc 2. The three Reidcmcisler moves 

We now apply these ideas to polygons in the simple cubic lattice. Let w E P, and 
v E P, be two polygons in the cubic lattice where the subscript denotes the number 
of edges in the polygon. We must define the projections of w and U on a convenient 
reference plane in the lattice. Let { e I ,  e*,  e3}  be the set of three orthogonal unit 
vectors in Z3. Let Q = {.e1 + ye, + ze31z = 0, z,y E R} be the ( z  = 0)-plane 
in 72'. Let w E P,, be any polygon in threedimensions, and consider the projection 
of w in Q. In general, w has edges parallel to the three lattice axes, and those 
edges parallel to the e3 axis will project to a single point in Q. We ignore these 
edges in the projection Multiple points in the projection will occur at points with 
integer coordinates in Q, or will be line segments which connect points with integer 
coordinates in Q. The projection of a polygon in Q is in general not regular, even 
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if we ignore edges in the e3 direction. If we, in addition, discount vertices in the 
projection where two projected edges make 180' angles (that is, the only vertices 
in the projected polygon are those where two edges make a 90° angle), then the 
projection Of w in Q might be regular. If we indicate overpasses and the orientation, 
then we can reconstruct w from its projection, except for the edges in w in the e3 
direction which are lost in the projection. We call the regular projections of lattice 
polygons into the ( z  = 0)-plane lattice knot projecfionr. 

If we Want to determine the ergodic classes of lattice polygons under the BFACF 
moves, then we must study the relation of Reidemeister moves to BFACF moves. It is 
obvious that, in any regular projection of w into a plane with a normal vector with 
irrational direction cosines, a BFACF move corresponds at most to a finite sequence 
of Reidemeister moves. The ergodic classes of the algorithm are therefore subsen 
of the knot types of the polygon in three dimensions. If the knot types of polygons 
(when viewed as piecewise linear knots) are represented by K, ,  then for each ergodic 
class in three dimensions, E i ,  there exists a j such that Ei c ICj. We therefore have 
the following proposition: 

Proposition 2.1. Let d = 3 and let w and U be two polygons in the set P = U,P,,. 
If w and U are in the same ergodic class, then they have the same knot-type. 

Proof. A BFACF move corresponds to a continuous deformation of the pair (w, R3), 
0 

Consider a self-avoiding walk in Z3 which is a member of Wry. Suppose that 
the projection of this walk in the ( z  = 0)-plane is a self-avoiding walk. A BFACF 
move on the projection (that is, on the square lattice) corresponds to at most a 
sequence of BFACF moves on the original walk (in the cubic lattice). It is easy to 
prove the following proposition (since the BFACF algorithm is ergodic in the square 
lattice (Madras 1986)): 

Proposition 2.2. Suppose that w is a walk in the cubic lattice in Wzv with projection 
U in the square lattice. Suppose that U is a self-avoiding walk connecting the vertices 
U and U. Then there exist a sequence of BFACF moves on w which will change the 
projection Y into any other self-avoiding walk connecting U and U. 

if we consider the polygon to be embedded in Euclidean 3-space. 

3. Properties of the BFACP algorithm in three dimensions 

In this section we consider the converse of proposition 2.1: if two polygons have the 
same knot type, then there exists a sequence of BFACF moves which connects them. 
That is, they are in the same ergodic class. An outline of the proof (of the converse 
of proposition 2.1) is as follows. We first show that if two polygons have identical 
lattice knot projections (as defined in section Z), then there exists a sequence of 
BFACF moves which will take one onto the other. If we know this, then all that is left 
to do is to prove that we can apply BFACF moves on the polygons so that they have 
identical lattice knot projection. 

In order to accomplish this, we first show that we can apply BFACF moves to any 
given polygon to change its projection into a lattice knot projection. We can then 
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restrict our attention to the set of polygons which have lattice knot projections. An 
ingredient in this proof is a construction which enables us to create as much space, 
empty of any images of edges or vertices, around a given point in the projection 
of the polygon, as we require. This construction is very useful in the execution 
of Reidemeister moves, since we can create as much ’working space’ as needed to 
perform the required move at a given location in the projection. Therefore, we can 
take two polygons of the same knot type and with lattice knot projections, and change 
one of them by BFACF moves such that they have isotopic lattice knot projections. 
The last step in the proof is to show that we can make isotopic lattice knot projections 
identical. 

E J Jame van Remburg and S G Whitrington 

In this section we shall need the following notation: 

Definition 3.1. Asegment [w i ,w j ]  of a polygon w is the set of vertices w i ,  wjt1, . . ., 
w j  if i < j, or is the union of [wi,w,] and [ w o , w j ]  if j < i. 

Definition 3.2. A segment [ w i , w j ]  is a side if the union of all the edges associated 
with the vertices in the segment is a line segment. We denote a side connecting the 
vertices wi and w j  by [ w i , w j ] , .  

A polygon in P,, has at least four, and and most TI sides. (If the angles between 
a given edge and its nearest neighbour edges are 90°, then the segment itself is a 
side). We define a side-operator, which takes a side of a given polygon and shifts it 
in a desired direction. Let [w i ,w j ] .  be any side in w, and suppose that e, is a unit 
vector perpendicular to the edges in [wi ,wj18 .  The aim is to perform an operation 
on this side to transform it into the side [wi + e , ,  w j  + e . ] , .  This is easily done using 
BFACF operations: Consider first the edge [ w i ,  w ; + ~ ] ,  and perform a BFACF move, 
whichever is necessary, to ‘shift’ this edge to [wi + e , ,wi t l  + e.] .  Consider then, 
in succession, the edges [ W ~ + ~ , W ~ + ~ + ~ ] ,  until i + k = j - 1. We have then moved 
the side one unit distance in the e,  direction. Call this operation M i j ( e * ) .  Then we 
may write symbolically 

M i j ( e . ) [ w i , w j l .  = [U; + e,,Wj + 4,.  (3.1) 

Note that we can use the operator M i j ( e , )  to split a side into sections, that is, 

Mde. ) [w; ,wj l .  = . [ ~ i ~ ~ ~ I s U [ w ~ , ~ l i + e , l . U [ w ~ + e . , ~ ~ + e . l ,  

U [wr + e ,+J l l sU[WI ,Wj la .  ( 3 4  

where k and 1 are vertices on the side beween i and j. The inverse of the operator 
M i j ( e , )  is M i j ( - e * ) .  

We can now prove the following proposition on polygons with regular lattice knot 
projections (in the sense of section 2.2): 

Proposition 3.3. Let w and v be two polygons in Z3 which have regular lattice knot 
projections. If w and v have identical lattice knot projections, then there exists a Set 
of BFACF moves which connects w and U. 
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Proof. Since the projections are regular, they each consist of a set of line segments 
in the plane Q. Each of these line segments is the image of a number of sides 
in w (or v). Let [w i ,wj ]  be the segment of w which has as image a particular 
line segment {i,j} in the lattice knot projection of w. If the line segment {i,j) 
contains underpasses, then we argue as follows. Suppose that there is only one 
.underpassat IC. Separate {i,j} into the pieces { i , k - l ) U { k - l , k + l } U { k + l , j } .  
The segments [ W ~ , W ~ - ~ ]  and [ W ~ + ~ , W ~ ]  are then without underpasses, and we can 
appiy the operator M . ( e , j  to the sides whicn are paraiiei to the piane 9. if 
there,are more underpasses in the line segment, then we perform this operation 
at each of the underpasses. Since these segments have the same images in the 
lattice knot projections for both w and U, we can change the segments in w into a 
standard position, and then change the segments in U to be identical to these standard 
positions. 

111* p'y'ygULw a,= 1IUW u r y  U"IG'G11, ar ,,IC urlucry~>G>. D y  vu, u J I I > U U C L L U I I ,  

each of the underpasses is a segment which is a side of two edges. Apply the 
operator M , ( e , )  to each of these edges until it is unit distance from the vertex 
which overpasses it. The polygons will then also be identical at this underpass. 

0 

71- ..̂I..",."" "__ " ̂... ,.-I.. -I:*,. ---. ". .L^ ._.._I^_^^^^^ D.. 

Repeat this process at each underpass. Then w and U are identical. 

This proposition is important. It says that if we have two polygons, and if we can 
use BFACF moves to transform them into polygons which have identical regular lattice 
knot projections in the plane Q, then we can change them into identical polygons, 
using BFACF moves. We now show that we can transform any projection into a regular 
lattice knot projection and, if two regular lattice knot projections are of the same knot 
type, then we can make them identical. 

k t  w be any pOiygOn in Z'. Consider the projection of w in the piane Q. The 
projection consists of a set of line segments joined at integer sites in Q. If this 
projection is not regular, then there. is either at least one vertex between two line 
segments in the projection which is a multiple point in the projection, or there are 
two edges which are projected to the same edge in Q, or both. lb proceed, we define 
the following: 

Definifion 3.4. Suppose that w is a polygon. If every plane IT which intersects the 
plane Q (the ( z  = 0)-plane) at 90' contains at most a finite number of disjoint 
points and at most one segmenf of w, and if the projection of w in Q contains no 
multiple edges, then we say that w is in sfundurd form. 

A polygon in standard form has a regular lattice knot projection (by definition). 
Let q ( a )  be the plane perpendicular to the vector ei containing the point a. We 
can now prove the following lemma: 

Lemma 3.5. Let w be a polygon. With m E 2, the plane T (  m + $) intersects w in 
a finite number of points which are elements of a number of sides in w. We can use 
BFACF moves to add an edge to each of the sides intersected by this plane. 

Proof. Consider the plane through the maximum i t h  coordinate of the vertices in 
w, say q(l). Label all the segments of w in this plane by integers 1, 2, . . ., and 
operate on each of them in turn by M , ( e i ) .  Once this is finished, consider the plane 
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T(1-  l), and so on, until we reach the plane T ( m  + 1). Since we have moved all 
the segments of w out of this plane, the intersection of it with w is at most a finite 
number of points which are elements in the sides of w which penetrate the plane 
T(m + $). Moreover, these sides terminate in segments which have been moved by 

0 

We can now consider the effect of lemma 3.5 on the projection of a polygon. 
The image of the plane T (m + i) is a line in Q .  Using the construction, we can 
‘move’ every edge in the polygon which projects to one side of the line by one lattice 
distance. The effect is that we ‘open’ up space in the projection; the line z(m+ 1) 
will contain no edges of the projected polygon. By repeating this process we can 
create as much space as we want. We can now consider the application of lemma 
3.5 to projections. In the next propasition we show that we can use BFACF moves to 
change any polygon into a polygon with a standard projection in the plane Q. 

Proposition 3.6. Let w be any polygon. Then we can apply BFACF moves to w to 
transform it into a polygon in standard form. 

Proof. Any plane which intersects the plane Q at 90° and which is not perpendicular 
to either the unit vectors e ,  or e, will intersect w in finitely many points. Therefore, 
we have only to consider the intersections between w and planes ?;(a)  perpendicular 
to either el (i = 1) or e2 (i = Z), and therefore perpendicular to the plane Q. 
Without loss of generality, let us first probe w with ‘&(a). Let X ( w i ) ,  Y ( w i )  and 
Z(wi)  be the components of the vertex wi in the e,, e2 and e3 directions respectively. 

Probe w with ‘Tl(maxi X ( w ; ) ) ,  which is the plane through the maximum value of 
the e, component of vertices in w.  The intersection between this plane and w is a set 
of segments of w. We can choose any of these segments and operate with M , ( e , )  on 
the sides which make up this segment This will move the segment one unit distance 
in the e, direction, and reduce the number of segments in the intersection by one. 
Label the shifted segment by the integer 1. If there is still more than one segment 
left in the intersection, then we apply M,(el)  first to the segment labelled by a 1, 
and then to any of the other segments, which we label by a 2. At the kth step, we 
first apply M , ( e , )  to all the segments labelled by 1 , 2 , .  . . , k- 1, and then to the kth 
segment. Eventually, there will be only one segment in the intersection between w 
and q(max; X ( w , ) ) ,  and each of the planes parallel to this plane through the points 
maxi X ( w i )  + 1, 1 an integer, contains at most one segment. In this case we label the 
last segment by the next integer, say m, and consider the plane T(maxi X ( w i )  - l), 
and continue the process, while we label the new segments by m f 1, m + 2, and so 
on. 

Since the polygon is finite this process must end. There will then be at most 
one segment in the intersection of ‘Tl(maxi X ( w i ) )  with w. So far, we have not 
dealt with multiple edges in the projection of w. Let [wi,wj] be a segment in a 
plane ? ( a )  such that its projection contains multiple edges. The segment contains 
several sides, and some the edges in these sides are projected to the same edges in 
Q. Choose k such that [wi,wk] is the biggest subsegment which has no multiple 
edges in its projection. Apply the construction in lemma 3.5 to remove all segments 
of the polygon from the plane ‘TI(. + 1). Then we can apply the operator Mik(el)  
to [w i ,wk ] .  The newly created segment in plane T1(a + 1) contains no double edges 
in its projection, and we have reduced the number of edges in the segment in plane 
‘T1(a) by at least one. We repeat this process now for the segment [wk ,w j ] .  At every 

E J Janse van Rensburg and S G Whiffington 

the operator M,(ei), so they are each unit distance longer, 
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stage we move a segment with no double edges in its projection to the plane 'T1(u+l). 
Since we started with a finite number of edges in [ w i , w j ] ,  this process must stop 
after a finite number of steps. The newly created segments have no double edges in 
their projections, and we have removed the multiple edges from the projection of the 
segment. 

At this stage we have 'stretched' w in the e l  direction such that no edge in the 
e2 direction is mapped into a multiple edge, and each plane 7 1 ( a )  contains at most 

direction form segments which may be more than one per plane, or may map to 
multiple edges in Q. We now rotate our axes, and probe w with the planes 'LZ(a) 
in the same manner as before, with one important difference: we note that every 
application of M . ( e Z )  in this part of the construction introduces or deletes edges 
in w in the ez direction, and we may create a second segment in one of the planes 

the new edges 
As before, this process must stop, since w is finite. By construction, w is now in 

standard form. 0 

By definition 3.4 and proposition 3.6 we have: 

OX segment of i+. Tk. p0:j;goii B iict yei iii atiiidaid foiiii. 'Ex edges in the el 

TI(.). !f :!lis hq?pens, then "e first rpp!j. !e-=-a 3.5 to create a:: ""pty p!rxe fc: 

Corolluty 3.7. Let w be any polygon. Then, by applying BFACF moves, we can 
transform w into a polygon which has a regular lattice knot projection. 

We now show that we can transform two polygons of the same knot type, each with 
a regular lattice knot projection, into polygons with the same lattice knot projection. 

Let w and U be two lattice polygons of the same knot type, and suppose that both 
have regular lattice knot projections on the plane Q. If we forget about the lattice for 
the moment, then there is a sequence of Reidemeister moves which connects a plane 
isotopy of the projection of w to a plane isotopy of U. The next step is to consider 
the execution of Reidemeister moves on a regular lattice knot projection. In these 
constructions we pass one segment of the polygon over another (in the projection). 
Observe that we can always do this; if we perfom BFACF moves in the e3 direction, 
we can increase the e3 component of the vertices of the overpassing strand at will, 
without changing the projection. Consider the moves one by one: 

Reidemeister I. Consider this situation in figures 2 and 3. This move operates on a 
segment of w which starts in an overpass (or underpass) and ends in an underpass 
(or overpass) at the same location in the lattice. Q, without containing any crossings 
between its beginning and its end. Let this segment be [ w i , w j ] .  Arrange matters 
such that i < j, without loss of generality. This segment consists of a number of 
sides. Operate with M l ( k e 3 )  on all the sides parallel to the plane Q so that the 
thud components of all the sides are now the Same as that of w i ,  except for the side 
[ W ~ - ~ , W ~ ] , .  The segment [ ~ , , w ~ - ~ ]  is then planar, and since the BFACF algorithm is 
ergodic in two dimensions, we can operate on this segment until it consists only of the 
edge [w i ,  w j _ J .  Alternatively, we can simply apply proposition 2.2 and the operator 
M.(ie3)  to the segment [ W ~ + ~ , U ~ - ~ ] .  One more application of a BFACF move to 
reduce the length by 2 removes the extra pair of edges, completing the construction. 
The sequence of events is illustrated in figure 3. In the opposite direction we must 
include a segment into w which will change its projection by Reidemeister I. In this 
case we reverse the last two steps of the previous construction. 'lb do this, we must 
create an area in Q, free of any projected edges, using the constructions in lemma 
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3.5. Note that the projection of w is still a regular lattice knot projection; we have to 
apply lemma 3.6 enough times to prevent the formation of double edges, or of more 
than one segment in each plane %( z ) ,  i = 1,2.  

E J Janse van Rensburg and S G Whirrington 
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Figure 3. A Reidemeister m w e  of type I performed on a polygon. 

Reidemeister II. Consider this situation in figures 2 and 4. This move operates on two 
segments of w which start at a crossing, and end in a second crossing, without any 
other crossings in the two segments. Let these segments be [U,, w,] and [ w k ,  w,]. ?b 
perform the move, we create an open area in Q, free of projected edges. The area 
P in iigure 4 can be made arbitrariiy iarge in any direction, using tne construction 
in lemma 3.5. We can then operate on the segments involved in the move. We first 
make them planar by applying M.(fe3), and then perform the move by applying 
BFACF moves, or alternatively, apply proposition 2.2. The resulting projection is still a 
regular lattice knot projection, since we can create enough space in Q to prevent the 
appearances of double edges, and keep the number of segments in any plane ‘&(z)  
at most one. Tne opposite of  his move is now obvious. 

Figure 4. Reidemeisler I I  performed on a projection of a polygon 

Reidemeisrer III. The last Reidemeister move is also straightfonuard. We illustrate 
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it in figures 2 and 5. Once again, we apply lemma 3.5 to make the areas PI, Pz 
and P3 arbitrarily large. The move can then be performed by making a segment 
of the polygon planar and applying BFACF moves (or use proposition 2.21, as for 
Reidemeister I and 11. The opposite of this move is now obvious. 

i 
._.... - -., 

: 

...... - .-__ .. i 
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We therefore have the following proposition: 

Proposilion 3.8. Let w and v be polygons of the same knot types, each with a regular 
lattice knot projection, W and V. Then, by applying BFACF moves, we can transform 
w into w', such that there exists a plane isotopy 1 with 2 : ( W ' ,  Q )  - (V, Q), where 
W' is the regular lattice knot projection of U'. 

Proof. If we consider W and V as two knot projections in Q, then there exists a 
sequence. of Reidemeister moves connecting W to V. We can now perform these 
Reidemeister moves one by one, by performing BFACF moves on w,  applying lemma 
3.7 and the constructions for the moves as set out above. Finally, (W' ,  Q) will be 

There is now just one last step to check. We must be able to make identical 
two isotopic projections through BFACF moves. This involve two phases: the first is 

isotopic to (V, Q). 0 
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a comparison of the two projections, edge by edge, and the second is a possible goo 
rotation or a translation of the projection. 

Propmilion 3.9. Let w and Y be two polygons with regular lattice knot projections 
W and V such that there exists an isotopy of the plane Z : (W, Q) - (V, Q). Then 
we can perform BFACF moves such that 1 is the identity or a translation of the lattice 
2 2 .  

Proof, Since the projection W is a regular projection, it does not contain any double 
edges in Q, and the only double points are at over- and underpasses, where sides make 
90’ angles with each other. By the Jordan curve theorem, W separates Q into at least 
two components, at most one of which is infinite. Let d ( z ,  y )  = ly, - z1I + Iy, - 1,) 
be the distance between the vertices z = (z,, zZ) and y = (y,, yz) in Q. Let {wi) 
and {vi} be the crossings in the projections W and V respectively. Apply lemma 3.5 
to w until evety area in V can be covered by its corresponding area in W, and until 
the minimum distance between a pair of crossings in W is greater than the maximum 
distance between pairs of vertices in V. 

If two areas in a regular lattice knot projection share a projected segment of the 
polygon (in Q), then we say that these areas are nearest neighbours. Label any of 
the areas in W by the integer 1. By virtue of the isotopy Z, there is an area in 
V which corresponds to this area. Call these areas W, and VI. Superimpose W, 
and VI such that V, is covered by W,. By our construction, this is always possible. 
W, is bounded by a number of projected segments of w. Fix the endpoints of these 
projected segments (the vertices t in figure 6), and apply proposition 2.2 to ‘close’ 
W ,  in on VI. (Note that we can perform BFACF moves on the projection to take 
the area W, - VI to zero; by proposition 2.2 we can always do this). Then every 
projected segment bounding VI is in the image of the corresponding segment (under 
the isotopy) in W .  W, is then identical to V,. We illustrate this in figure 6. In this 
construction we may introduce double edges in the projection W, as we see in figure 
6. We leave this unchanged for the moment. Note that the vertices in W which are 
incident on W, have been moved to their ‘correct position’ by this operation. 

U U 
Plgure 6. To make W, identical lo VI we fix the segments bounding Wl at the vertices 
i and apply proposition 1.2. 

Consider all the nearest neighbours of W,, and label them, in any order, 2, 3, 
. . .. We repeat the process with W,, starting with the segments which share a vertex 
with a labelled area. We have to consider two possibilities. The first case is the same 
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as the above; V, is covered by W,. In this case we perform the same construction; we 
'close' the relevent segments in on V, to make the area W, - V, zero. By proposition 
2.2 we can always do this. The second possibility is that there may be some segmenix 
in W which pass through the image of V,. In this case we must sweep V, clean 
before we can apply the construction But we can always do that by proposition 2.2. 
Note that the segments of W that we move cannot interact with any crossing in W ;  
if they do, then there is a segment in V which can connect two crossings in W.  This 

the above construction to make W, and V, identical. W, shares a segment with W,, 
so we do not change this segment since it is already in the correct conformation. 
Note that we never perform a Reidemeister move in these operations; the worst we 
do  is to  introduce multiple edges in strings at the crossings in W .  Once we have 
performed the construction a t  W,, we consider W,, until all the nearest neighbours 
"L **1 Ud*G "GCLI b,,'l,LgG" L" "G IUGIIIILa, L" L U G  w I I G D p " I I u I I t g  mca3 111 Y . ""1 a,,u 

its neighbours form a subset of W which is identical to the corresponding areas in V. 
Then consider nearest neighbours of W,, W,, and so on, until no more neighbours 
can be found. If all the segments which bound an unlabelled area are also parts 
of the boundaries of labelled areas then the unlabelled area will be identical to the 
corresponding area in V. We label these areas with an A, since we do not need to 

areas a cluster around the area W,. Any unlabelled area in W cannot be a neighbour 
of a labelled area, and is connected to the cluster around W, either by a crossing, or 
by a string of double edges which was created in the construction. 

& mnin&ciioii. GiiE we kdve swept aii segmena of v,, then we an agp;y 
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!she! them wit!! BE integer. One such eve!?! OCC"IE i!? @re 6. we a!! !hb se? af 

El ,d ,-L7jp 
Figure 7. The areas labelled K. i = 1 to 5, and 
A form a cluster. V, forms a second cluster. 

Choose any unlabelled area in W which is connected to a labelled cluster by either 
a crossing, or by a string of double edges. Consider the vertex 1 (figure 7), incident 
on the labelled cluster, and common to the chosen area, or to the string of double 
edges connected to the labelled area. The two segments bounding the unlabelled 
area and incident on 1 in the projection contain the string of double edges, if such 
a string exists. If we now perform BFACF moves to identify these segment to their 
counterparts in V, then the double edges disappear, since they do not exist in V. We 
can now operate on the other segmem to make the area identical to its image in 
V. Label this area by IC. Consider now the nearest ncighbours of W ,  until a second 
cluster has been identified. Look then for a third cluster, and so on, until all the 
areas are labelled. 

Once every area in W is iabeiicd, then 'W is identicai to V up to an accidentai 
translation of the lattice 2' C Q (which was introduced by the initial position of the 
area Wl). 0 
Proposition 3.10. Let w be any polygon with projection W in the plane Q. Then we 
can apply BFACF moves to translate W any distance in a lattice direction in Q. 
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PrmJ Without loss of generality, suppose we want to translate W a distance d 
along the e, direction. Let us probe the polygon by I,( z ) ,  where we choose z = 
m a x i ( X ( w i ) ) .  7 , ( r )  contains a number of sides of w. Pick any of these sides, say 
[w i ,w j ] ,  and apply the operation Mij(el)  d times in succession. This will translate 
[w i ,wj ] .  a distance d in the el direction. Repeat this process with all the sides in 
'TI(.). Reduce z then by 1 and repeat the process. Keep on reducing z until we 
cannot find an intersection between w and T1(z). Then we have translated W a 

0 

E J Janse van Rensburg and S C Whiffinglon 

distance d in the el direction. 

We have now completed the proof of the following theorem. 

Theorem. 3.11 The ergodicity classes of the BFACF algorithm, when applied to un- 
rooted polygons, are the knot types of the polygons. 

The proof of theorem 3.11 is direct from proposition 3.3, corollary 3.7, and 
propositions 3.8, 3.9 and 3.10. 

4. Discussion 

The application of the BFACF algorithm to self-avoiding polygons on the simple cubic 
lattice involves sampling along a realization of a Markov chain defined on the set 
of polygons. We have shown that the ergodic classes of this Markov chain are the 
knot classes of the polygons. This means that the set of polygons sampled in any 
realization is the set which has the ssme knot type as the initial polygon. This makes 
the BFACF method a convenient one for studying the properties of polygons with given 
knot type. 

FLgurc 8. A crankshail which 'passes' one segment of a polygon through another. 

In two dimensions the corresponding algorithm is known to be ergodic (Madras 
1986). In four and higher dimensions the question is still open though we think it 
unlikely that topological obstructions will occur. 

A question which arises naturally in three dimensions is what extra moves are 
needed to make the algorithm ergodic? Brower (1991) has suggested that the addition 
of a four-bond crankshaft move to the BFACF algorithm will make the algorithm 
ergodic for all polygons. 'lb see this, suppose we have a knotted polygon U. By 
applying BFACF moves we can put w into any convenient conformation. In particular, 
we can transform w to a polygon whose vertices have third-component values only 
0 or 1. In addition to this, we can arrange matters such that the only vertices in 
w with thud components not zero are those involved in an overpass. (Think Of a 
knot projection, where the vertices are all in the same plane, except at the crossings, 
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where the overpasses are like the conformations in figure 8). Since any knot universe 
has an associated set of under- and overcrosings which corresponds to the unknot 
(e.g. the knot with ascending overcrossings) we can untie any knot by performing the 

undesired orientation. 
a n h h a f t  move, as we i!!..tr.te L!! fig... 6, in tllrn a! W C I y  "g whic!! has the 
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