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Abstract. The BFACF algorithm applied to polygons involves sampling on a Markov chain
whose state space is the set of all polygons. In three dimensions, for the simple cubic
lattice, we prove that the ergodic classes of this Markov chain are the knot classes of

the polygons.

1. Introduction

Monte Carlo treatments of the self-avoiding walk and related problems fall into two
broad classes. One of these could be described as walk growing methods in which
the walk is constructed step by step. For a discussion of this approach see e.g.
Hammersley and Handscomb (1964), chapter 10. The other general approach is to
make changes in the walk and produce a correlated sequence of walks. This approach
is often called Metropolis style Monte Carlo (Metropolis et af 1953) and involves
sampling along a realization of a Markov chain, whose (unique) limit distribution
is the desired distribution. For example, if the problem being studied is the pure
n-step self-avoiding walk, the state space of the Markov chain should be the set of
all n-step self-avoiding walks and the limit distribution should be uniform. The limit
distribution must be unique and not depend on the initial state of the realization of
the Markov chain (Hammersley and Handscomb 1964).

Early attempts in this direction include papers by Verdier and Stockmayer (1962),
Kron (1965), Bluestone and Vold (1965), Monnerie and Geny (1969) and Lal (1969),
although some of these workers had in mind a simulation of the dynamics of the
polymer being modelled by the walk. There has been a recent renewal of interest
in this kind of approach, both from a theoretical and from a practical point of view.
Madras and Sokal (1987) proved that no such method which is length conserving (i.c.
for fixed n) and uses only local moves can be ergodic, which implies that the limit
distribution will depend on the initial state of the realization.

This paper is concerned with the BFACF algorithm (Berg and Foester 1981, Aragao
de Carvalho er al 1983, Aragao de Carvalho and Caracciolo 1983) which simulates
walks with variable length and fixed endpoints in the hypercubic lattice. When applied
to self-avoiding walks with fixed endpoints in the square lattice the underlying Markov
chain is known to be ergodic (Madras 1986). The BFACF algorithm is not related
to the Berretti-Sokal algorithm (Berretti and Sokal 1985) which simulates walks
with free endpoints and variable length. The dynamical behaviour of the BFACF
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algorithm is known to be considerably worse than the Berretti-Sokal algorithm (for
recent progress in understanding the dynamical behaviour of these algorithms see, for
example, Caracciolo and Sokal 1986, Sokal and Thomas 1988, Caracciolo ef al 1990a,
b, 1991).

The algorithm can be applied to polygons but in this case ergodicity questions
are rather more tricky. For the square lattice Madras (1986) has shown that the
algorithm is ergodic but, in three dimensions, it is easy to see that the BFACF moves

will not convert a knotted nolvoon to an unknotted nolveon This is enoush to show
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that the algorithm is not ergod:c In this paper we prove that the ergodic classes
are the knot types. That is, if two polygons are of the same knot type they can be
interconverted by BFACF moves, but not otherwise. This result is interesting from two
points of view. It means that the BFACF algorithm cannot be applied (as it stands) to
sample uniformly from the space of all polygons but, perhaps more importantly, it is
a convenient algorithm for investigating the properties of polygons of fixed knot tyne,
Elsewhere we make use of this feature to investigate the dimensions of polygons of
fixed knot type (Janse van Rensburg and Whittington 1991).

2. Definitions

2.1. The BFACF Algorithm

An unrooted self-avoiding polygon, or polygon w, in any lattice, is a sequence of
lattice sites wq, wy,wy, . . . ,w,, and associated edges (w;,w,;, ) such that: w, = w,_,
and w; and w, , are necarest neighbours in the lattice, and w,,w,,...,w, are all
distinct. If w, ;é: w, then we call w a walk. Let Z¢ be the d-dimensional hypercubic
lattice. Let { e,},_1 be the set of orthogonal unit vectors in Z¢, The BFACF algorithm
is a local stochastic process which operates on paths (any sequence of edges) in
the hypercubic lattice. It generates statistical ensembles of paths with a Boltzmann
distribution (Berg and Foester 1981). The algorithm was first applied to ‘bosonic’
walks (Brownian walks) and ‘fermionic’ walks (Brownian walks without ‘spikes”) by
Berg and Foester (1981), before it was applied to the self-avoiding walk by Aragao
de Carvalho et al (1983) and Aragao de Carvalho and Caracciolo (1983).

Let P be the space of equivalence classes of polygons modulo a translation in
24, and let W_, be the set of all walks connecting the lattice sites  and y in Z¢,
(In the subsequent discussions, we refer to elements of F as ‘polygons’; since these
are in fact equivalence classes modulo a translation, we see that they are unrooted
polygons. Observe that these are not the same as walks which start and terminate at
neighbouring lattice sites, which correspond to rooted polygons.) The BFACF algorithm
operates on w (which is either a walk in W, or an unrooted polygon in P) by
attempting one of the local deformations shown in figure 1, at a randomly selected
location on edges which are present in w. If successful, these elementary operations
result in a length change in w which is either —2, ¢ or +2. Observe that if w is
a walk, then the local deformations cannot move its endpoints (which are therefore
fixed in the lattice), In contrast, an unrooted polygon can be translated anywhere, as
we shall prove later in this paper (proposition 3.10). For a detailed description of the
algorithm, see for example Caracciolo et a/ 1990a (which contains in addition to the
usual implementation also a Metropolis style implementation of the algorithm).

The algorithm involves sampling along a realization of a Markov chain, the state
space of which is the set of all polygons or walks with fixed endpoints. In two
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a)

b) «—

Figure 1. The elementary moves of the BFACF algorithm.

dimensions the Markov chain is known to be irreducible (Madras 1986) and in three
dimensions it is known to be reducible (Madras and Sokal 1987). Let the ergodicity
classes in three dimensions be £;,7 = 1,2, .... If the algorithm is applied to polygons
then it is known that the limit distribution of the Markov chain is not unique and
depends on the initial state of the realization. In general, we can write the limit
distribution as (Berg and Foester 1981)

mi(w) = Z;(8) " |w| 8! 21

where w € &; for some 4, |w| is the number of edges in w, J i3 an adjustable
parameter and the normalization factor Z;(3) is given by

Z(B) = ) w8, 2.2)

wEE;

The set £; is determined by the initial polygon or walk in the realization.

The transition probability matrix P = {p(w — v)} = {p,,} has the following
properties in its ergodic classes: (1) For each w,r € £; there exists an m 2 0 such
that the m-step transition probability from w to » is positive, (2} For each polygon

€ &, D uee, Mi(W)p,,, = m(v). It is easy to show that ;(w) is the unique limit
distribution of the Markov chain with state space £; and transition probability matrix
P (Kemeny and Snell 1976).

In two dimensions there is only one ergodic class, In three and higher dimensions
we have to determine the ergodic classes &;. In section 3 we consider the case in
three dimensions, which is particularly interesting. In four and higher dimensions
little is known about the behaviour of this algorithm.

2.2. Knots and polygons

Let S! be the circle, and consider the map f : S! — RS2, an embedding of a
circle into Euclidean 3-space. (That is, f is one-to-one and is a homeomorphism
onto its image.) We write this map as (f;S',R%). A polygon w € 23 C R%® is
a piecewise linear embedding of S in R3. We call any embedding ( f; S, R%) a
knot. An embedding ( f; S',R?) is oriented if we give an orientation to the circle.
Two (piecewise linear) oriented embeddings ( f; S',R?) and (g; S1,R3) are ambient
isotopic if there is an orientation-preserving isotopy H : R® x I — R3 x [ (I is the
unit interval) with H(y,t) = (h,(¥)},t) such that &, is the identity, and A, f = g.
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In other words, we can continuously deform R® such that ( f; $*,R®) is taken into
(g; S',R?). We note that two oriented polygons which are ambient isotopic do not
need to have the same number of edges.

We call two (oriented) piecewise linear embeddings equivalent if they are ambient
isotopic. We call the equivalence classes of (oriented) embeddings of the circle into
Euclidean space knot tfypes. In the case of polygons in 23, we define a knot type as
all the polygons which are in the same equivalence class when viewed as piecewise
linear embeddings of the circle into R3.

A projection P of a circle on any plane R? C R? is called regular if (1) there are
only finitely many multiple points {p;|1 € ¢ < n}, (2) all multiple points are double
points, and (3) no vertex of the knot is mapped onto a double point.

The regular projection of a knot does not determine the knot but, if we indicate
at every double point the overpassing line and the orientation of the knot, we can
reconstruct the knot from its regular projection. Such a projection (which allows the
reconstruction of the original knot) is called a knot projection (Burde and Zieschang
1985).

Two knot projections are defined to be equivalent if they are connected by a
finite sequence of Reidemeister moves (Reidemeister 1932), which are (local) op-
erations on the knot projection. We illustrate the Reidemeister moves in figure 2.
All these moves can be realised in the knot projection by an ambient isotopy of the
knot. Therefore equivalent knot projections define equivalent knots. The converse
is also true: equivalent knots have equivalent knot projections (Reidemeister 1923).
Therefore, two knots are equivalent if and only if their projections are equivalent.

I X—)

. X

1I:

K
! ! !
ARV

Figure 2. The three Reidemeister moves.

We now apply these ideas to polygons in the simple cubic lattice. Let w € P, and
v € P, be two polygons in the cubic lattice where the subscript denotes the number
of edges in the polygon. We must define the projections of w and v on a convenient
reference plane in the lattice. Let {e,, e,, €3} be the set of three orthogonal unit
vectors in 23, Let Q = {ze, + ye, + ze3]z =0, z,y € R} be the (z = 0)-plane
in R3. Let w € P, be any polygon in three-dimensions, and consider the projection
of w in Q. In general, w has edges parallel to the three lattice axes, and those
edges parallel to the e, axis will project to a single point in Q. We ignore these
edges in the projection. Multiple points in the projection will occur at points with
integer coordinates in @, or will be line segments which connect points with integer
coordinates in Q. The projection of a polygon in Q is in general not regular, even
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if we ignore edges in the e; direction. If we, in addition, discount vertices in the
projection where two projected edges make 180° angles (that is, the only vertices
in the projected polygon are those where two edges make a 90° angle), then the
projection of w in Q might be regular. If we indicate overpasses and the orientation,
then we can reconmstruct w from its projection, except for the edges in w in the e,
direction which are lost in the projection. We call the regular projections of lattice
polygons into the {2z = 0)-plane lattice knot projections.

If we want to determine the ergodic classes of lattice polygons under the BFACF
moves, then we must study the relation of Reidemeister moves to BFACF moves. It is
obvious that, in any regular projection of w into a plane with a normal vector with
irrational direction cosines, a BFEACF move corresponds at most to a finite sequence
of Reidemeister moves. The ergodic classes of the algorithm are therefore subsets
of the knot types of the polygon in three dimensions. If the knot types of polygons
(when viewed as piecewise linear knots) are represented by K, then for each ergodic
class in three dimensions, &;, there exists a j such that £, C K ;- We therefore have
the following proposition:

Proposition 2.1. Let d = 3 and let w and v be two polygons in the set P =U, P,.
If w and v are in the same ergodic class, then they have the same knot-type.

Proof. A BFACF move corresponds to a continuous deformation of the pair {(w, R?),
if we consider the polygon to be embedded in Euclidean 3-space. 0

Consider a self-avoiding walk in Z2 which is a member of W_ . Suppose that
the projection of this walk in the (» = 0)-plane is a self-avoiding walk. A BFACF
move on the projection (that is, on the square lattice)} corresponds to at most a
sequence of BFACF moves on the original walk (in the cubic lattice). It is easy to
prove the following proposition (since the BFACF algorithm is ergodic in the square
lattice (Madras 1986)):

Proposition 2.2. Suppose that w is a walk in the cubic lattice in W with projection
v in the square lattice. Suppose that v is a self-avoiding walk connecting the vertices
u and v. Then there exist a sequence of BFACF moves on w which will change the
projection v into any other self-avoiding walk connecting » and v.

3. Properties of the BFACF algorithm in three dimensions

In this section we consider the converse of proposition 2.1: if two polygons have the
same knot type, then there exists a sequence of BFACF moves which connects them.
That is, they are in the same ergodic class. An outline of the proof (of the converse
of proposition 2.1) ts as follows. We first show that if two polygons have identical
lattice knot projections (as defined in section 2), then there exists a sequence of
BFACF moves which will take one onto the other. If we know this, then all that is left
to do is to prove that we can apply BFACF moves on the polygons so that they have
identical lattice knot projection,

In order to accomplish this, we first show that we can apply BFACF moves to any
given polygon to change its projection into a lattice knot projection. We can then
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restrict our attention to the set of polygons which have lattice knot projections. An
ingredient in this proof is a construction which enables us to create as much space,
empty of any images of edges or vertices, around a given point in the projection
of the polygon, as we require. This construction is very useful in the execution
of Reidemeister moves, since we can create as much ‘working space’ as needed to
perform the required move at a given location in the projection. Therefore, we can
take two polygons of the same knot type and with lattice knot projections, and change
one of them by BEACF moves such that they have isotopic lattice knot projections.
The last step in the proof is to show that we can make isotopic lattice knot projections
identical.
In this section we shall need the following notation:

Definition 3.1. A segment [w;,w;] of a polygon w is the set of vertices w;, Wiy, - -+
w; if 7 < j, or is the union of [w;,w,] and [wy,w,] if § < 4.

Definition 3.2. A segment [w,,w,] is a side if the union of all the edges associated
with the vertices in the segment is a line segment. We denote a side connecting the
vertices w; and w; by [w;,w;],.

A polygon in P, has at least four, and and most n sides. (If the angles between
a given edge and its nearest neighbour edges are 90°, then the segment itself is a
side). We define a side-operator, which takes a side of a given polygon and shifts it
in a desired direction. Let {w;,w;], be any side in w, and suppose that e, is a unit
vector perpendicular to the edges in [w;,w;],. The aim is to perform an operation
on this side to transform it into the side [w; + e, ,w; + ¢,],. This is easily done using
BFACF operations: Consider first the edge [w;,w;,], and perform a BFACF move,
whichever is necessary, to ‘shift’ this edge to [w; + e,,w;,, + €,]. Consider then,
in succession, the edges [w;, ;,w; x4 ), until ¢ + & = j — 1. We have then moved
the side one unit distance in the e, direction. Call this operation M,;{e,). Then we
may write symbolically

Mij(e-)[wi"“"j]a = [w; + €,,w; + e, (3.1
Note that we can use the operator M ;(e,) to split a side into sections, that is,
Myi(e)w;w;], = [wiswi], Ulwg,wp +e],Ulwy + e, w +e],

U lw; + e.wy], Ulwp,wil, (3.2)
where k and | are vertices on the side beween ¢ and j. The inverse of the operator
ng(e-) is Mij(-et)'

We can now prove the following proposition on polygons with regular lattice knot
projections (in the sense of section 2.2):

Proposition 3.3. Let w and v be two polygons in Z2 which have regular lattice knot
projections. If w and v have identical latticc knot projections, then there exists a set
of BFACF moves which connects w and v,
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Proof. Since the projections are regular, they each consist of a set of line segments
in the plane Q. Each of these line segments is the image of a number of sides
in w (or v). Let [w,,w ] be the segment of « which has as image a particular
line segment {i, 3} in the lattice knot projection of w. If the line segment {i,3}
contains underpasses, then we argue as follows. Suppose that there is only one
‘underpass at k. Separate {z,j} into the pieces {i{,k—1}U{k—1,k+1}U{k+1,75}.
The segments [u,,wk 1] and [w, +159; ;] are then without underpasses, and we can
apply the operator A, (e;) to the sides which are paraliel to the plane Q. If
there are more underpasses in the line segment, then we perform this operation
at each of the underpasses. Since these segments have the same images in the
lattice knot projections for both w and v, we can change the segments in w into a
standard position, and then change the segments in v to be identical to these standard
Ppositions.

nhronne ava A 2w ein

The pOIYEOns are now uuly different at the und €Ipasses. B}’ Ouf construction,
each of the underpasses is a segment which is a side of two edges. Apply the
operator M, (e;) to each of these edges until it is unit distance from the vertex
which overpasses it. The polygons will then also be identical at this underpass.
Repeat this process at each underpass. Then w and v are identical. |

This proposition is important. It says that if we have two polygons, and if we can
use BFACF moves to transform them into polygons which have identical regular lattice
knot projections in the plane Q, then we can change them into identical polygons,
using BFACF moves. We now show that we can transform any projection into a regular
lattice knot projection and, if two regular lattice knot projections are of the same knot
type, then we can make them identical.

Let w be any polygon in Z3. Consider the projection of w in the plane Q. The
projection consists of a set of line segments joined at integer sites in Q. If this
projection is not regular, then there is either at least one vertex between two line
segments in the projection which is a multiple point in the projection, or there are
two edges which are projected to the same edge in @, or both. To proceed, we define
the following:

Definition 3.4. Suppose that w is a polygon. If every plane T which intersects the
plane Q (the (z = 0)-plane) at 90° contains at most a finite number of disjoint
points and at most one segment of w, and if the projection of w in @ contains no
multiple edges, then we say that w i3 in standard form.

A polygon in standard form has & regular lattice knot projection (by definition).
Let T;(a) be the plane perpendicular to the vector e; containing the point a. We
can now prove the following lemma:

Lemma 3.5. Let w be a polygon. With m € Z, the plane T;,(m + 1) intersects w in
a finite number of points which are elements of a number of sides in w. We can use
BFACF moves to add an edge to each of the sides intersected by this plane.

Proof. Consider the plane through the maximum ith coordinate of the vertices in
w, say 7;(1). Label all the segments of w in this plane by integers 1, 2, ..., and
operate on each of them in turn by M _(e;). Once this is finished, consider the plane
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T:(I1 = 1), and so on, until we reach the plane 7;(m + 1). Since we have moved all
the segments of w out of this plane, the intersection of it with w is at most a finite
number of points which are elements in the sides of w which penetrate the plane
T:.(m + ). Moreover, these sides terminate in segments which have been moved by
the operator M, (e, ), so they are each unit distance longer, O

We can now consider the effect of lemma 3.5 on the projection of a polygon.
The image of the plane T;(wm -+ 1) is a line in Q. Using the construction, we can
‘move’ every edge in the polygon which projects to one side of the line by one lattice
distance. The effect is that we ‘open’ up space in the projection; the line 7;(m + 1)
will contain no edges of the projected polygon. By repeating this process we can
create as much space as we want. We can now consider the application of lemma
3.5 to projections. In the next proposition we show that we can use BFACF moves to
change any polygon into a polygon with a standard projection in the plane Q.

Proposition 3.6. Let w be any polygon. Then we can apply BFACF moves to w t0
transform it into a polygon in standard form.

Proof. Any plane which intersects the plane Q at 90° and which is not perpendicular
to either the unit vectors e, or e, will intersect w in finitely many points. Therefore,
we have only to consider the intersections between w and planes T;(a} perpendicular
to either e, (i = 1) or e, (¢ = 2), and therefore perpendicular to the plane Q.
Without loss of generality, let us first probe w with 7;(a). Let X(w;), Y {(w;) and
Z{w;) be the components of the vertex w; in the e,, e, and e4 directions respectively.

Probe w with 7;(max; X (w;)), which is the plane through the maximum value of
the e; component of vertices in w. The intersection between this plane and w is a set
of segments of w. We can choose any of these segments and operate with A{ (e,} on
the sides which make up this segment. This will move the segment one unit distance
in the e, direction, and reduce the number of segments in the intersection by one.
Label the shifted segment by the integer 1. If there is still more than one segment
left in the intersection, then we apply M, (e,) first to the segment labelled by a 1,
and then to any of the other segments, which we label by a 2. At the kth step, we
first apply M, (e,) to all the segments labelled by 1,2, ..., k-1, and then to the kth
segment. Eventually, there will be only one segment in the intersection between w
and 7, (max; X(w,)), and each of the planes parallel to this plane through the points
max; X(w;)+1!, I an integer, contains at most one segment. In this case we label the
last segment by the next integer, say m, and consider the plane 7,(max; X (w;)—1),
and continue the process, while we label the new scgments by m 41, m + 2, and so
on.

Since the polygon is finite this process must end. There will then be at most
one segment in the intersection of 7;(max; X(w;)) with w. So far, we have not
dealt with multiple edges in the projection of w. Let [w;,w;]| be a segment in a
plane 7;(a) such that its projection contains multiple edges. The segment contains
several sides, and some the edges in these sides are projected to the same edges in
Q. Choose k such that [w;,w,] is the biggest subsegment which has no multiple
edges in its projection. Apply the construction in lemma 3.5 to remove all segments
of the polygon from the plane 7,{a + 1). Then we can apply the operator M;, (e, }
10 [w;,w)]. The newly created segment in plane 7,(a <+ 1) contains no double edges
in its projection, and we have reduced the number of edges in the segment in plane
T,(a) by at least one. We repeat this process now for the segment [w,,w;]. At every
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stage we move a segment with no double edges in its projection to the plane 7;(a+1).
Since we started with a finite number of edges in [w;,w;], this process must stop
after a finite number of steps. The newly created segments have no double edges in
their projections, and we have removed the multiple edges from the projection of the
segment.

At this stage we have ‘stretched’ w in the e, direction such that no edge in the
e, direction is mapped into a multiple edge, and each plane 7;(e) contains at most
one segment of w. The polygon is not yet in standard form. The edges in the e,
direction form segments which may be more than one per plane, or may map to
multiple edges in Q. We now rotate our axes, and probe w with the planes 7,(a)
in the same manner as before, with one important difference: we note that every
application of M, (e;) in this part of the construction introduces or deletes edges
in w in the e, direction, and we may create a second segment in one of the planes

7;(e). If this happens, then we first apply lemma 3.5 to create an empty plane for

the new cdges.
As before, this process must stop, since w is finite. By construction, w is now in
standard form. O

By definition 3.4 and proposition 3.6 we have:

Corollary 3.7. Let w be any polygon. Then, by applying BFACF moves, we can
transform « into a polygon which has a regular lattice knot projection.

We now show that we can transform two polygons of the same knot type, each with
a regular lattice knot projection, into polygons with the same lattice knot projection.

Let w and v be two lattice polygons of the same knot type, and suppose that both
have regular lattice knot projections on the plane Q. If we forget about the lattice for
the moment, then there is a sequence of Reidemeister moves which connects a plane
isotopy of the projection of w to a plane isotopy of ». The next step is to consider
the execution of Reidemeister moves on a regular lattice knot projection. In these
constructions we pass one segment of the polygon over another (in the projection).
Observe that we can always do this; if we perform BFACF moves in the e direction,
we can increase the e, component of the vertices of the overpassing strand at will,
without changing the projeciion. Consider the moves one by one:
Reidemeister 1. Consider this situation in figures 2 and 3. This move operates on a
segment of w which starts in an overpass (or underpass) and ends in an underpass
(or overpass) at the same location in the lattice @, without containing any crossings
between its beginning and its end. Let this segment be [w;,w;]. Arrange matters
such that ¢ < j, without loss of generality. This segment consists of a number of
sides. Operate with M_(+e,) on all the sides parallel to the plane @ so that the
third components of all the sides are now the same as that of w;, except for the side
[w;_1,w;],. The segment [w;,w;_,] is then planar, and since the BFACF algorithm is
ergodic in two dimensions, we can operate on this segment until it consists only of the
edge [w;,w;_,|. Alternatively, we can simply apply proposition 2.2 and the operator
M (xeg) to the segment {w;,,,w;_,]. One more application of a BFACF move to
reduce the length by 2 removes the extra pair of edges, completing the construction,
The sequence of events is illustrated in figure 3. In the opposite direction we must
include a segment into w which will change its projection by Reidemeister I. In this
case we reverse the last two steps of the previous construction. To do this, we must
create an area in @, free of any projected edges, using the constructions in lemma
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3.5. Note that the projection of w is still a regular lattice knot projection; we have to

apply lemma 3.6 enough times to prevent the formation of double edges, or of more
than one segment in each plane 7;(z), i = 1,2.

j-1

j/l
H 'f -
/%r ,:
/ i i+l

-

Figure 3. A Reidemeister move of type I performed on a polygon.

Reidemeister I, Consider this situation in figures 2 and 4. This move operates on two
segments of «> which start at a crossing, and end in a second crossing, without any
other crossings in the two segments. Let these segments be [w;, w;] and [w;,w,]. To
perform the move, we create an open area in Q, free of projected edges. The area
P in figure 4 can be made arbitrarily large in any direction, using the construction
in lemma 3.5. We can then operate on the segments involved in the move. We first
make them planar by applying M, (%e;), and then perform the move by applying
BFACF moves, or alternatively, apply proposition 2.2. The resulting projection is still a
regular lattice knot projection, since we can create enough space in @ to prevent the
appearances of double edges, and keep the number of segments in any plane 7;(z)
at most one. The opposite of this move is now obvious.

.
H

Figure 4. Reidemeister 11 performed on a projection of a polygon.

Reidemeister III, The last Reidemeister move is also straightforward. We illustrate
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it in figures 2 and 5. Once again, we apply lemma 3.5 to make the areas P, P,
and P arbitrarily large. The move can then be performed by making a segment
of the polygon planar and applying BFACF moves (or use proposition 2.2), as for
Reidemeister I and II. The opposite of this move is now obvious.

-

Figure 5. Reidemeister [1! performed on a
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We therefore have the following proposition:

Proposition 3.8. Let w and v be polygons of the same knot types, each with a regular
lattice knot projection, W and V. Then, by applying BFACF moves, we can transform
w into w’, such that there exists a plane isotopy I with Z : (W', Q) — (V, Q), where
W' is the regular lattice knot projection of «'.

Proof. 1f we consider W and V' as two knot projections in ), then there exists a
sequence of Reidemeister moves connecting W to V. We can now perform these
Reidemeister moves one by one, by performing BFACF moves on w, applying lemma
3.7 and the constructions for the moves as set out above. Finally, (W', Q) will be
isotopic to (V, Q). O

There is now just one last step to check. We must be able to make identical
two isotopic projections through BFACF moves. This involve two phases: the first is
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a comparison of the two projections, edge by edge, and the second is a possible 90°
rotation or a translation of the projection.

Proposition 3.9. Let w and v be two polygons with regular lattice knot projections
W and V such that there exists an isotopy of the plane Z : (W, Q) — (V, Q). Then
we can perform BFACF moves such that 7 is the identity or a translation of the lattice
22,

Proof. Since the projection W is a regular projection, it does not contain any double
edges in @, and the only double points ate at over- and underpasses, where sides make
90° angles with each other. By the Jordan curve theorem, W separates @ into at least
two components, at most one of which is infinite. Let d{z, y) = |y, — |+ |y; ~ z,|
be the distance between the vertices @ = (x, #,) and y = (y,,y,) in Q. Let {w,}
and {v;} be the crossings in the projections W and V respectively. Apply lemma 3.5
to w until every area in V' can be covered by its corresponding area in W, and until
the minimum distance between a pair of crossings in W is greater than the maximum
distance between pairs of vertices in V.

If two areas in a regular lattice knot projection share a projected segment of the
polygon (in Q), then we say that these areas are nearest neighbours. Label any of
the areas in W by the integer 1. By virtue of the isotopy Z, there is an area in
V' which corresponds to this area. Call these areas W, and V. Superimpose W,
and V] such that V] is covered by W,. By our construction, this is always possible.
W, is bounded by a number of projected segments of w. Fix the endpoints of these
projected segments (the vertices ¢ in figure 6), and apply proposition 2.2 to ‘close’ .
W, in on V|. (Note that we can perform BFACF moves on the projection to take
the area W, — V; to zero; by proposition 2.2 we can always do this). Then every
projected segment bounding V; is in the image of the corresponding segment (under
the isotopy) in W. W, is then identical to V|. We illustrate this in figure 6. In this
construction we may introduce double edges in the projection W, as we see in figure
6. We leave this unchanged for the moment. Note that the vertices in W which are
incident on W, have been moved to their ‘correct position’ by this operation.

i t l |1
oy PERE. | .

Figure 6. To make W) identical to Vi we fix the segments bounding W) at the vertices
t and apply proposition 2.2.

Consider all the nearest neighbours of W, and label them, in any order, 2, 3,
.... We repeat the process with W,, starting with the segments which share a vertex
with a labelled area. We have to consider two possibilities. The first case is the same
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as the above; V, is covered by W, In this case we perform the same construction; we
‘close’ the relevent segments in on V, to make the area W, -V, zero. By proposition
2.2 we can always do this. The second possibility is that there may be some segments
in W which pass through the image of V,. In this case we must sweep V, clean
before we can apply the construction. But we can always do that by proposition 2.2.
Note that the segments of W that we move cannot interact with any crossing in W;
if they do, then there is a segment in V which can connect two crossings in W. This
is a contradiction. Once we have swept all the segments out of V;, then we can apply
the above construction to make W, and V, identical. W, shares a segment with W,
so we do not change this segment since it is already in the correct conformation.
Note that we never perform a Reidemeister move in these operations; the worst we
do is to introduce multiple edges in strings at the crossings in W. Once we have
performed the construction at W,, we consider Wy, until all the nearest neighbours
of W, have been changed io be identical to the corresponding areas in V. W) and
its neighbours form a subset of W which is identical t0 the corresponding areas in V.
Then consider nearest neighbours of W,, W, and so on, until no more neighbours
can be found. If all the segments which bound an unlabelled area are also parts
of the boundaries of labelled areas then the unlabelled area will be identical to the

corresponding area in V. We label these areas with an A, since we do not need to
label them with an inteper. One such event occurs in fisure 6 We call this set of
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areas a cluster around the area W,. Any unlabelled area in W cannot be a neighbour
of a labelled area, and is connected to the cluster around W, either by a crossing, or
by a string of double edges which was created in the construction.

Vz |
v, ]
Al Vs
Al L["
Vi
Figure 7. The areas labelled V;, i = 1 to 5, and
Vg A form a cluster. Vg forms a second cluster.

Choose any unlabelled area in W which is connected to a labelled cluster by either
a crossing, or by a string of double edges. Consider the vertex ¢ (figure 7), incident
on the labelled cluster, and common to the chosen area, or to the string of double
edges connected to the labelled area. The two segments bounding the unlabelled
area and incident on ¢ in the projection contain the string of double edges, if such
a string exists. If we now petform BFACF moves to identify these segment to their
counterparts in V, then the double edges disappear, since they do not exist in V. We
can now operate on the other segments to make the area identical to its image in
V. Label this area by k, Consider now the nearest neighbours of W, until a second
cluster has been identified. Look then for a third cluster, and so on, until all the
areas are labelled.

Once every area in W is labelicd, then W is identical to V' up to an accidental
translation of the lattice 22 C Q (which was introduced by the initial position of the
area W,). a

Proposition 3.10. Let wo be any polygon with projection W in the plane Q. Then we
can apply BFACF moves to translate W any distance in a lattice direction in Q.
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Proof. Without loss of generality, suppose we want to translate W a distance d
along the e, direction. Let us probe the polygon by 7,(z), where we choose z =
max;{ X(w;)}). 7T;(z) contains a number of sides of w., Pick any of these sides, say
[w;,w;], and apply the operation M;.(e,) d times in succession. This will translate
fw;,w ], a distance d in the e, direction. Repeat this process with all the sides in
Tl(z) Reduce z then by 1 and repeat the process. Keep on reducing z until we
cannot find an intersection between w and 7,(z). Then we have translated W a
distance d in the e, direction. O

We have now completed the proof of the following theorem.

Theorem. 3.11 The ergodicity classes of the BFACF algorithm, when applied to un-
rooted polygons, are the knot types of the polygons.

The proof of theorem 3.11 is direct from proposition 3.3, corollary 3.7, and
propositions 3.8, 3.9 and 3.10.

4. Discussion

The application of the BFACF algorithm to self-avoiding polygons on the simple cubic
lattice involves sampling along a realization of a Markov chain defined on the set
of polygons. We have shown that the ergodic classes of this Markov chain are the
knot classes of the polygons. This means that the set of polygons sampled in any
realization is the set which has the same knot type as the initial polygon. This makes
the BFACF method a convenient one for studying the properties of polygons with given
knot type.

Figure B. A crankshaft which ‘passes’ one segment of a polygon through another.

In two dimensions the corresponding algorithm is known to be ergodic (Madras
1986). In four and higher dimensions the question is still open though we think it
unlikely that topological obstructions will occur.

A question which arises naturally in three dimensions is what extra moves are
needed to make the algorithm ergodic? Brower (1991) has suggested that the addition
of a four-bond crankshaft move to the BFACF algorithm will make the algorithm
ergodic for all polygons. To see this, suppose we have a knotted polygon w. By
applying BFACF moves we can put w into any convenient conformation. In particular,
we can transform w to a polygon whose vertices have third-component values only
0 or 1. In addition to this, we can arrange matters such that the only vertices in
w with third components not zero are those involved in an overpass. (Think of a
knot projection, where the vertices are all in the same plane, except at the crossings,
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where the overpasses are like the conformations in figure 8). Since any knot universe
has an associated set of under- and overcrossings which corresponds to the unksot

{e.g. the knot with ascending overcmssings) we can untie any knot by performing the
crankshaft move, as we illustrate in figere & in turn at every crossing which has the
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